Documento

LISTA DE DERIVADAS COMPUESTAS

Tipo	Función simple		Función compu	Función compuesta	
Constante	f(x) = k	$f'(x) = 0, k \in \mathbb{R}$			
Identidad	f(x) = x	f'(x) = 1			
Potencial	$f(x) = x^a$	$f'(x) = a \cdot x^{a-1}$	$f(x) = f^a$	$f'(x) = a \cdot f^{a-1} \cdot f'$	
Irracional	f(x) = ⁿ √x	$f'(x) = \frac{1}{n \cdot \sqrt[n]{x^{n-1}}}$	f(x) = [™] f	$f'(x) = \frac{f'}{n \cdot \sqrt[n]{f^{n-1}}}$	
Exponencial	$f(x) = e^{X}$	$f'(x) = e^X$	$f(x) = e^f$	$f'(x) = e^f \cdot f'$	
	$f(x) = a^{X}$	$f'(x) = a^X \cdot lna$	$f(x) = a^f$	$f'(x) = a^f \cdot f' \cdot lna$	
Potencial exponencial	La derivamos como tipo potencial y le sumamos la derivada como exponencial. *** Se suele hacer tomando logaritmos no se aplica esta fórmula.		Es una función $D[f^g] = g$	Es una función f elevada a otra función g $D \begin{bmatrix} f^g \end{bmatrix} = g \cdot f^{g-1} \cdot f' + f^g \cdot g' \cdot \ln f$ D quiere decir derivada	
Logarítmica	f(x) =In x	$f'(x) = \frac{1}{x}$	f(x) =In f	$f'(x) = \frac{f'}{f}$	
	f(x) =lg _a x	$f'(x) = \frac{1}{x \cdot \ln x}$	f(x) = Ig _a f	$f'(x) = \frac{f'}{f \cdot \ln a}$	
		Trigonom	nétricas	1 - 111 d	
Seno	f(x) = sen x	$f'(x) = \cos x$	f(x) = sen f	$f'(x) = \cos f \cdot f'$	
Coseno	$f(x) = \cos x$	$f'(x) = - \operatorname{sen} x$	$f(x) = \cos f$	$f'(x) = -\operatorname{sen} f \cdot f'$	
Tangente	$f(x) = tg x$ $f'(x) = 1 + tg^2 x = \frac{1}{\cos^2 x}$			$= (1 + tg^2 f) \cdot f' = \frac{f'}{\cos^2 f}$	
Arco seno	f(x) =arc sen x	$f'(x) = \frac{1}{\sqrt{1 - x^2}}$		$f'(x) = \frac{f'}{\sqrt{1 - f^2}}$	
Arco coseno	f(x) =arc cos x	$f'(x) = \frac{-1}{\sqrt{1-x^2}}$	f(x) = arc cos f	$f'(x) = \frac{-f'}{\sqrt{1-f^2}}$	
Arco tangente	f(x) =arc tg x	$f'(x) = \frac{1}{1+x^2}$	f(x) = arc tg f	$f'(x) = \frac{f'}{1+f^2}$	
		REGLAS DE D	ERIVACIÓN		
Suma	(f + g)' =	f'+ a' L	a derivada de una suma de d	os funciones es la suma de las	
Resta $(f-g)' = f$		r-a' L		vada de una diferencia de dos funciones es la diferencia	
Producto	$(f \cdot g) = f' \cdot$	g+f·g' d	a derivada del producto de do e la primera función por la se	derivadas de estas funciones. ivada del producto de dos funciones es igual a la derivada rimera función por la segunda sin derivar más la primera	
Cociente $\left(\frac{f}{g}\right) = \frac{f}{g}$		- f · g' d	a derivada del cociente de do e numerador por el denomina umerador sin derivar por la d	n sin derivar por la derivada de la segunda. ivada del cociente de dos funciones es igual a la derivada nerador por el denominador sin derivar menos el ador sin derivar por la derivada del denominador y, todo ividido por el denominador sin derivar al cuadrado.	
Producto por un número $(a \cdot f) = a$		· L	La derivada del producto de un número real por una función es igual al número real por la derivada de la función.		
Composición $[q(f(x))]$		$=g'(f(x))\cdot f'(x)$	X) Regla de la cadena		